Gefährdungspotentiale beim Plasma-Konditionieren von Oberflächen

Plasmaverfahren sind nicht nur zur Abscheidung dienlich, sie stellen auch eine ganz Anzahl von Anwendungen zur Oberflächenbehandlung vor Nachfolgeprozessen zur Verfügung:

  • Veränderung des Ladungszustands
  • Einstellen einer definierten Mikrorauhigkeit
  • Entfernung störender Beläge

Während für die erste Anforderung bereits ein Freistrahlplasma (Corona discharge, atmosphärischer Plasmajet) genügt, muss man bei den anderen beiden auf Prozessabläufe im Hochvakuum zurückgreifen. Die hier erzeugten Gasentladungen bergen aber einige „Stolpersteine“, die es zu beachten gibt.

Zwei Arten der Erzeugung von solchem Plasma sind gebräuchlich:

  • RF (kapazitiv gekoppelt – CCP) mit Elektroden im Inneren der Reaktionskammer
  • Mikrowellenerzeugung (magnetisiert (ECR) oder unmagnetisiert), Einkopplung über z.B. Hohlleiter.

Ein typisches Plasma enthält:

  • Neutrale Moleküle : Dichte ~10¹⁶/cm³
  • Radikale: ~10¹⁴/cm³
  • Elektronen: ~10⁸/cm³
  • Positive Ionen ~10⁸/cm³

Es gibt eine Million mal mehr Radikale als Ionen, da diese eine um Grössen-ordnungen längere Lebensdauer haben.

Sie werden durch Dissoziation, Disproportionierung und Rekombination erzeugt. Sie entstehen bereits bei geringen Energien. Bei der Rekombination wird Energie in Form von UV-Licht freigesetzt.

  • Ionen ätzen nicht direkt, ausser sie sind selbst reaktiv (zB. Cl, F) und das Plasma ist anisotrop.
  • Sie sind im Fall von z.B. Ar nur Stosspartner des Reaktivgases oder physikalische Komponenten des Ätzprozesses.

Die Hauptreaktion wird von den Radikalen getragen. Sie sind ungeladen, sehr reaktiv und binden sich an die Oberflächen, wo dann die chemischen Prozesse ablaufen.

Bei höheren Drücken sind mehr Radikale zu erwarten, als bei niedrigeren, da eine erhöhte Stosswahrscheinlichkeit eine grössere Wechselwirkung zwischen den gasförmigen Komponenten  im Plasma ermöglicht.


Der Mechanismus der Randschicht (Dunkelzone, Sheath):

→ Durch Ausbildung des sog. „Debye-Sheaths“ wird im RF-Plasma bei den gebräuchlichen Frequenzen im (z.B.13.56) MHz Bereich ein hoher Spannungsabfall in Richtung Substrat erzeugt:

  • Ionen werden in diese Richtung beschleunigt und erzeugen Schäden.

Ein Effekt, der beim anisotropen RIE Ätzen durchaus erwünscht ist, nicht aber beim Reinigen oder Konditionieren.unbenannt-1rewzwte

DC Sheath Spannung:     

Die Sheath Spannung erhöht sich mit dem RF-Strom und verringert sich mit der Anregungsfrequenz

Spezialfall Mikrowellenplasma:

Im Mikrowellenplasma entsteht das Phänomen des hohen Spannungsabfalls an einer Randschicht nicht, da die Breite und der Spannungsabfall des Sheaths von der Stärke des RF-Stroms (e- die das Sheath passieren) und der Anregungsfrequenz des Plasmas abhängen.

Allgemein gilt:

  • Sehr geringer „self bias“ bei hohen Frequenzen: 2.45 GHz, zB. ECR-Verascher.
  • → Kein Ionenbombardement des Substrates
  • → Kein gerichtetes Plasma, daher isotrope Wirkung, nicht für RIE zur  Strukturierung geeignet, gut für Reinigungszwecke.

Konkrete Anwendung von Plasmaentladungen als Reinigung oder konditionierende Vorbehandlung für Fügeprozesse, bei empfindlichen Substraten oder bereits mit Bauelelement-Strukturen:

Im Fall des elektrodenfrei Magnetron-erzeugten Plasmas mit einer Frequenz von 2.42 GHZ (Quelle ausserhalb des Rezipienten, wie beim Mikrowellenherd) handelt es sich nicht um ein CCP, daher keine Probleme mit Ionenschäden.

Einkopplung von Mikrowellenenergie in sensible Bauelemente:

Bei der üblichen externen Quelle sollte der Leistungs-Peak der eingestrahlten Mikrowellenenergie innerhalb des Rezipienten (Resonanz-Abstimmung des Hohlleiters mit dem Rezipienten notwendig) liegen.

Wenn Bauelemente mit Metallkomponenten in kritischen Längen durch Mikrowellenplasmen behandelt werden, besteht die Gefahr des Antenneneffekts, die zu Zerstörung führen kann → z.B. HF-Hybride mit Streifenleitern oder MMIC!

Man beachte: Auch Bonddrähte können als Antenne wirken.

Schäden durch UV-Licht aus der Gasentladung:

  • Die dabei auftretenden Energien müssen durch Analyse des Spektrums der benötigten Gasmischung bestimmt werden.
  • Ar-O2 Mischungen – wie sie z.B. zum Veraschen von Polymeren (z.B. beim Resiststrippen) benutzt werden, emittieren i. A. oberhalb von 400 nm.

Schäden durch thermische Belastung

Hohe Plasmadichten und hohe Elektronentemperaturen können thermische Schäden verursachen, da dann der Wärmeübertrag auf das Substrat relevant wird.

Plasmatechnologie in der Praxis:
PVD – Depositionsverfahren für ultradünne Schichten

PVD = Physical Vapor Deposition a.k.a Sputtern oder Kathodenzerstäubung

Grundprinzip einer PVD-Anlage und Grundzüge des Verfahrens

Bei solchen Anlagen wird mit Hilfe der Kathodenzerstäubung eine Beschichtung auf ein Substrat aufgebracht. Bei diesem physikalischen Vorgang wird Material von einem sogenannten Target mit Hilfe von energiereichen Edelgas-Ionen durch Beschuss herausgelöst (vaporisiert). Dann wird es aus der Gasphase wieder auf Substrate abgeschieden. Es lassen sich sehr dünne, reine Filme und auch mehrlagige Beschichtungen erzeugen. Bevorzugtes Material sind Metalle aller Art, aber auch Halbleiter und Isolatoren kommen in Frage. Durch das Einbringen reaktiver Gase in das eigentliche Sputtergas sind auch chemische Prozesse wie Oxidation und Nitrierung während des Abscheidevorgangs möglich.

Wie funktioniert PVD in der technischen Anwendung und wie kann man es sich eine Anlage für socleh Prozesse einfach vorstellen?

Denken wir an die leicht antiquierte Elektronenröhre, wie es sie aus Glas noch heute gibt. Deren Dioden-Anordnung stellt im Wesentlichen das Grundkonzept eine Sputteranlage sowohl im Gleichstrom- als auch im Wechselfeldbetrieb (RF) dar. Eine negative Elektrode (Kathode) liefert die energiereichen Elektronen, welche die Atome des Sputtergases durch Stoss ionisieren. Hierzu braucht man eine Hochspannungsquelle, damit die Austrittsarbeit für die Elektronen aus der Kathode überwunden wird, und eine Gasentladung  (Plasma) gezündet werden kann. Daher richtet sich die Höhe der sogenannten „Zündspannung“ nach dem Targetmaterial (Isolatoren und Halbleiter haben eine höhere Austrittsarbeit als Metalle). Haben die Elektronen durch Stösse die Gasatome ionisiert, werden diese aufgrund ihrer positiven Ladung auf das Target (Kathode) beschleunigt, wo sie Material erodieren können. Dieses wird quasi feinst zerstäubt und landet schliesslich auf dem zu beschichtenden Trägermaterial.

Um eine höhere Einschlagsdichte der positiven Sputtergasionen und damit auch eine grössere Erosionsrate zu erzielen konzentriert man die Stosselektronen zusätzlich mit Hilfe von Magnetfeldern in der Nähe des Targets. Damit erhält man gleichzeitig eine vordefinierte „Einschlagszone“ der Ionen. Eine solche Targetanordnung mit Magneten nennt man Magnetron-Target.

Bei zu hohen Austrittarbeiten greift man auf ein alternatives Verfahren, das sogenannte RF-Sputtern zurück. Davon aber später.

Wie in der Elektronenröhre können die Stossprozesse der Elektronen mit den Gasatomen nur in einem verdünnten Medium stattfinden, d.h. bei geringem Gasdruck. Um Verunreinigungen der Schichten zu verhindern, wird vor Verwendung des Sputtergases die „Röhre“ evakuiert, um reaktive Bestandteile der Atmosphäre zu entfernen.  Da bei sehr dünnen Schichten eine hohe chemische Reinheit unbedingt erwünscht ist, sind die Anforderungen an das erzeugte Vakuum entsprechend hoch – ein Hochvakuum, eben.

sptter_bearbeitet-3k
PVD-Prozess: Elektronen treten aus der Kathode aus, werden zum Substrat beschleunigt. Argon-Atome werden von den Elektronen ionisiert zu Ar+. Sie werden zum Target gezogen und tragen dort Material ab. Dieses landet auf dem Substrat.

Damit ein Abscheide-Prozess nach oben dargstellter Methode überhaupt stattfinden kann, benötigt man also folgende Komponenten:

  • einen Edelstahlbehälter (Rezipient, Prozesskammer) mit vakuumdichten Anschlüssen und der Möglichkeit, eine Spannung anzulegen.
  • Ein Pumpsystem mit dem man diesen Behälter evakuieren und während des Prozesses einen gewünschten Sputtergas-Druck (eventuell über ein Drosselventil) stabil halten kann
  • Sputtergasversorgung, aus dem über ein Regelsystem Gas definiert in den Behälter eingeleitet werden kann.
  • Eine Spannungsquelle zur Erzeugung der Sputtergasionen.
  • Halte- und Kühlvorrichtung für Substrat
  • Halte- und Kühlvorrichtung für Target
Schema einer PVD-Anlage
Schema einer PVD-Anlage

Die Wahl von Edelstahl für einen Rezipienten beruht auf folgenden Faktoren: Elektrisch leitend, nicht magnetisch, chemische und thermische Stabilität, gut mechanisch bearbeitbar, Oberfläche polierbar, leicht zu reinigen.

Sputtergase sind normalerweise Edelgase, da sie nicht mit dem Substrat- oder Targetmaterial chemisch reagieren. Ausserdem können sie wieder aus Target und Substrat desorbiert werden. Edelgase besitzen ein höheres Atomgewicht, daher sind sie als Mittel zum Erodieren von Material gut wirksam. Argon ist das am häufigsten verwendete Sputtergas.

Der auch als Rezipient bezeichnete Edelstahlbehälter besitzt verschiedene Durchlässe für:

  • Zugang durch eine große Öffnung (Tür) für die Wartung
  • Schleuse für das Belade-und Entladevorrichtung
  • Große Öffnung für den Anschluss des Pumpssystems
  • Durchführung für eine Messröhre eines Vakuummesssystems (Kontrolle und Regelung des Vakuumzustandes)
  • Anschluss für das Belüftungsgas
  • Anschluss für das Sputtergas
  • Durchführung für die Target-Halterung
  • Durchführungen für bewegliche Komponenten (z.B.: Sputterblenden, bewegliche Substrathalter)
steuerung1
Kontrolleinheit Turbopumpe
Turbomolekularpumpe - Aussenseite
Turbomolekularpumpe – Antriebs-Aussenseite

Das Pumpsystem für eine Hochvakuumsanlage besteht meistens aus zwei Stufen:

  • einer Pumpe, die ein Vorvakuum erzeugt. Dies kann entweder eine Drehschieberpumpe (Öl) oder ein Trockenläufer (ölfreie Wälzkolbenpumpe) sein.
  •  einer zusätzlichen Pumpe, die über eine Art Kompressorstufe das Hochvakuum erzeugt.
    1. Turbomolekularpumpe (verdichtet mit hoher Drehzahl und feinen Rotorblättern, wassergekühlt) inklusive eines Turbocontrollers (Regelung der Drehzahl). Gasmoleküle werden „angeschubst“ und in Richtung der Vorpumpe gedrängt und abgesaugt.
    2. Kryopumpe  (Stirlingmotor mit Helium als Wärmetauscher, das auf 4 Kelvin gekühlt wird). Gasmoleküle werden „verlangsamt“ und „ausgefroren“.
    3. Meissnerfalle, eine schlichtere Variante der Kryopumpe: Ein Gefäss aus dem Kühllamellen in die Prozesskammer ragen, wird mit flüssigem Stickstoff befüllt – keine echte Pumpe, eine Zusatzvorrichtung bei Einsatz von Turbopumpen.
    4. Sorptions- und Getterpumpen binden Gasmoleküle an eine reaktive Oberfläche, aktiv (Ionengetter) oder passiv (Sorption)
  • einem Absperr-/Drosselventil, das die Hochvakuumpumpen von der Prozesskammer abschotten kann, bzw zur Regelung der Abpumpleistung.
  • Hochvakuumspumpen können im Allgemeinen zerstörungsfrei erst ab einem gewissen Unterdruck arbeiten.
Mass flow controller
Mass flow controller für die Sputtergasdosierung
venzil1
Belüftungs- und Einlassventile
ventil2
Drosselventil VAT zur Turbopumpe

 

 

 

 

 

 

 

 

 

 

Die Versorgung des Edelstahlbehälters mit verschiedenen Gasen:

Die verwendeten hochreinen Gase befinden sich in Edelstahlflaschen unter hohen Druck. Am Auslass der Flaschen befinden sich zwei Manometer, das erste zeigt den Druck der Flasche (z.B.: 100 bar) an, das zweite kontrolliert den über einen Druckminderer reduzierten Vordruck (z.B.: 6 bar).

  • Zum Belüften des Behälters wird meist reiner Stickstoff verwendet. Über ein Nadelventil (mechanisches Ventil mit Mikrometerschraube fein dosierbar) kann der Behälter schonend ohne Druckstoss belüftet werden.
  • Das Sputtergas (meist Argon) wird über polierte Edelstahlrohre an eine Gasregeleinheit (mass flow controller) herangeführt. Mit Hilfe dieser Regeleinheit kann ein definierter Gasfluss zur  Prozzesskammer hergestellt werden.

steuerung2

Zur Erzeugung eines Plasmas benötigen wir eine Spannungsquelle:

  • Gleichstrom-Spannungsquellen, übliche Leistungen 500W bis zu 18KW bei Spannungen von mehreren hundert Volt. Die Kathode wird an das Target (Material, das abgetragen werden soll) und die Anode an das Substrat (Träger, auf den das abgetragene Material deponiert werden soll) angeschlossen.
  • RF-Generatoren mit den freien Frequenzen von 13,56 MHz oder einem Vielfachen. Es wird ein hochfrequentes Wechselfeld zwischen dem Target und dem Substrat angelegt. Die Leistungen betragen bis zu mehreren kW. Dieses Verfahren wird meist bei isolierenden Materialien, bzw. solchen mit hohen Austrittsarbeiten verwendet, oder bei geringen Sputterdrücken.
    • Die Elektronen für die Stossionisation des Sputtergases kommen dann z.B. von den leitfähigen Teilen des Substrathalters/Substrats, sie werden im Hochfrequenzfeld hin-und herbeschleunigt, was ihre Wechselwirkungswahrscheinlichkeit mit dem Gas erhöht.
    • Die entstehenden Gasionen sind zu träge, um der Polumkehr des Feldes zu folgen, sie landen schliesslich auf dem durch eine zusätzliche Gleichspannung negativ aufgeladenen Target, wo sie das Material erodieren.
    • Da das gesamte RF-System einen kapazitiv gekoppelten Schwingkreis darstellt, muss es jedoch, damit auch die Leistung am Target ankommt, wie ein Radiosender elektrisch abgeglichen werden (kapazitive Impedanz). Dies bewerkstelligt eine sogenannte Matchbox mit RCL-Gliedern, der Abgleich funktioniert wie beim Dampfradio über regelbare Dreh-Luftkondensatoren.

Wichtig für das Beschichtungsergebnis ist die Lagerung und Befestigung der Substrate:

  • Es gibt daher unterschiedliche Substratbefestigungsvarianten mit oder ohne Temperierungsmöglichkeit. Um grössere Mengen an Substraten zu beschichten kommen auch Horden oder Batches zur Anwendung, die meistens unter dem Target verfahren werden, um eine gleichmässigere Abscheidung zu ermöglichen.
  • Auch die Abscheidetemperatur beeinflusst sehr stark die Schichteigenschaften (z.B. Dichte, Spannung, spezifischer Widerstand, Korngrössen, Reflektivität, Brechungsindex). Deshalb wird heute die Substrataufnahme meist thermisch kontrolliert, um stabil reproduzierbare Schichten mit den gewünschten Eigenschaften herzustellen.

 Unbewegliche Substrathalter

  • Mechanische Halterung: Ein Ring drückt das Substrat am Rande gegen den Substrathalter (clamping)
  • Diese Substrathalter können meist temperiert werden (elektrisch geheizt werden)
  • Temperaturkontrolle: Zwischen dem Substrathalter und dem Substrat befindet sich ein inertes Gas (z.B.:Argon), das für den Energietransport sorgt.
  • Resultat der mechanischen Halterung ist die nicht vollständige Bedeckung des  Substrats (Randausschluss)
  • Elektrostatische Halterung: Über ein elektrostatisches Feld von mehreren tausend Volt wird das Substrat gehalten. Die Temperierung verläuft analog der mechanischen Halterung
  • Vorteil : Abscheidung vollständig auf dem gesamten Substrat.

Bewegliche Substrathalter – Drehteller oder verfahrbare Paletten mit Ablagetaschen für die Substrate.

  • Ablage ohne definierte Halterung mit nur geringer Fixierung: Die Substrate liegen in einer Vertiefung und haben keinen ganzflächigen Kontakt zum Halter. Eine Temperierung des Substrathalters ist nur in kleinen Temperaturbereichen möglich.

Die folgende Beschreibung bezieht sich auf PVD-Abscheidung mit Hilfe einer Magnetron-Sputteranalge. Es kommen einfache Rundtargets zum Einsatz.

targatanschlus
Ausgebautes abgebranntes Target: Kupferner Halte-Einsatz mit Anschlüssen für HV und Kühlwasser. Einsätze verbrauchter Targets werden durch Neubelegung recycled.

Aufbau, Haltevorrichtung und Kühlung der Targets

  • Das Target, also das zu sputternde Material, wird bei einem Rundtarget auf als dünne Scheibe vollflächig auf eine Kupferhalteplatte gelötet. Diese Kupferhalteplatte wird dann über Teflon- bzw. Keramik und O-Ringe zur Kammer hin isoliert montiert. Sie ist mit der Spannungsversorgung elektrisch (Kathode) z.B.: über ein Kupferband verbunden.
  • Andere Bauformen: Bei Klemm-Targets von High-Volume Beschichtungsanlagen werden dickere Barren des Beschichtungsmaterials werdet.
  • Immer kommt Material von sehr hoher Reinheit zum Einsatz: In der Halbleiterherstellung ist es 5N-Qualität = 99.999 % rein.

Nicht nur die Substrat-, auch die Targetkühlung ist notwendig, da dieses durch den Beschluss mit Ionen stark erhitzt wird. Eine gute Kühlung wird durch den Wasserfluss innerhalb der Kühlkanäle in den Kupferhalteplatten erreicht.

targnet-inside
Zerlegtes Target: Es besteht aus einer Kupferhalteplatte mit Wasserkanal (rechts) mit den beiden Wasseranschlüssen. Über das Wasser wird die beim Sputtervorgang erzeugte Wärme abgeführt. Auf der linken Seite des Bildes ist das Magnetjoch mit dem Mittelmagneten sowie den kleinen Magneten am Rand zu sehen. Nun wird auch verständlich, warum wir in der Mitte des Targets keinen Materialabtrag haben.
target1
In diesem Bild sieht man das Targetmaterial. Diese Seite ist der Prozesskammer zugewandt. Durch die Magnetronanordnung erzeugter Sputtergraben mit blindem Fleck in der Mitte. Diese ungleichmässige Erosion der Sputtermaterials führt zu einer geringen Nutzung der Gesamtfläche und einem vorzeitigen Verschleiss des Targets.
Auf diesem Bild ist im oberen Teil des Bildes die Kupferhalteplatte zu sehen. Im unteren Bereich ist gut das Sputtermaterial erkennbar, das über ein spezielles Indiumlot mit der Kupferplatte verbunden ist.
targetbrand
Abgebranntes Target, mit durchgesputtertem Erosionsgraben.

Wenn man das Target, das nur eine realtiv geringe Dicke hat, nicht rechtzeitig austauscht, kann durch das Material durchgesputtert werden, und man erreicht das Bondmaterial oder gar das Kupfer der Halteplatte. In diesem Fall sind die abgeschiedenen Schichten wertlos, da kontaminiert.

target-infunktion
Eingebautes und angeschlossenes Target. Es ist über einen O-Ring und einer Teflonscheibe mit der Prozesskammer verbunden. Der Wasseranschluß erfolgt über zwei Schnellkupplungen. Der Hochspannunganschluß erfolgt über ein Kupferband an der Aussenseite (im Vordergrund).
targetwellen
Neuere Sputteranlagen für Massenproduktion und großem Substratdurchmesser setzen eine verbesserte Bauform ihrer Targets ein: In diesem Fall ist die Nutzung des Targets mit Hilfe von vier Magnet-Anordnungen wesentlich höher.

Es gibt Magnetrontargets auch als keilförmige „Segmenttargets“ oder noch exotischere Varianten, wie die bereits erwähnte Barrenform. Zusätzlich kann das statische Magnetfeld für eine noch bessere Nutzung des Targets durch ein sweep-Elektromagnetfeld ersetzt werden.

Eine Anlage mit Drehteller erfordert eine Zusatzmassnahme für eine gleichmässige Abscheidung. Wegen einer radial abhängigen Dicke der Beschichtung muss dies ausgeglichen werden. Hierfür nimmt man an den zunächst ungleichmässigen Schichten eine Dickenmessung vor (Mapping) und errechnet aus den Werten eine Ausgleichsblende für das Target – die sogenannte Uniformityblende.

Diese wird zwischen dem Target und dem Substrat eingebracht.

uni-blende1
Uniformity-Blende: Der Ausschnitt wird bestimmt durch unterschiedliche Abtragsraten am Target. Der größere Ausschnitt im oberen Bildbereich zeigt zum Tellerrand, der untere kleinere Ausschnitt zeigt zur Drehachse des Teller. Somit wird die unterschiedliche Deposition bedingt durch die Drehung kompensiert.

Der Nachteil einer solchen Anordnung ist die Deposition des Materials auf dieser Blende, was bei genügend hoher Dicke wegen der Spannung dazu führt, dass es  abplatzt und die Blende gereinigt werden muss, da sonst ein Partikelproblem nicht zu vermeiden ist.

Alle Targets können über verfahrbare Schutzblenden abgedeckt werden, damit sie sich nicht beim Sputtern gegeseitig kontaminieren dazu kommt noch ein Dunkelfeld-Schild, der verhindert dass im Innenraum des Targets ein Plasma brennt. Zum Schluss braucht man noch eine sogenannte Vorsputterblende, die bei aktivem Target vor dieses gefahren wird um eine Vorreinigung zu ermöglichen.

Wie läuft so eine Prozessfolge konkret ab, wie kann man nun ein Plasma sicher erzeugen und den Abscheideprozess stabil halten?

  • Die Prozesskammer wird abgepumpt:
    1. Die Vorpumpe ist eingeschaltet und pumpt die eingeschaltete Turbopumpe ab und den Rezipienten ab.
    2. Die Ventile der Gasversorgung sind geschlossen.
    3. Bei Erreichen des Vordrucks in Prozesskammer und Turbopumpe wird das Kammerventil zur Turbopumpe geöffnet. Nun muss gewartet werden, bis das gewünschte Basisvakuum erreicht ist.
  • Alle Schutzblenden sind vor die inaktiven Targets gefahren, die Vorsputterblende steht auf „geschlossen“
  • Einlass des Sputtergases (z.B.: Argon) mit einem vordefinierten Fluss.
  • Anlegen einer DC-Spannung an Anode und Kathode. Alternativ: Aktivierung des RF-Generators. Ist genug Gas vorhanden und die Zündspannung erreicht, ensteht die Plasma-Entladung, was durch ein kleines Sichtfenster in der Kammer optisch kontrolliert werden kann. Je nach Gas-Sorte entsteht ein unterschiedlich farbiges Leuchten, wie bei einer Aurora Borealis.
  • Durch Beobachtes der Strom/Spannungswerte am Target lässt sich die Sputterleistung ablesen.
  • Um das Target zu reinigen wird eine gewisse Menge Material bei geschlossener Blende abgetragen.
  • Schliesslich fährt der Substrateller los, die Vorsputterblende öffnet sich, die Beschichtung startet.
  • Die Dicke kann über eine feste Abscheidezeit oder die Anzahl der Tellerumdrehungen eingestellt werden.

Um nicht ständig ein neues Basisvakuum herstellen zu müssen, dies kann bei anspruchsvollen Prozessen über Nacht andauern, arbeitet man bei industriellen Anlagen mit einem Zwei-Kammersystem:

  1. Der eigentlichen Prozesskammer mit dem (Ultra)-Hochvakuum.
  2. Einer Belade-(Transfer)Kammer mit Ladevorrichtungen und kleinem Volumen, die schnell evakuiert werden kann. Hier werden die Substrate eingebracht und wieder entnommen. Diese Station erreicht mindestens Feinvakuum, arbeitet meistens aber auch schon mit einem Hochvakuum geringer Stufe. Schliesslich erledigt ein Robotsystem in der Transferkammer die Beförderung der Substrate in die Prozesskammer, die mit der Ladestation durch eine Schleuse verbunden ist.
  3. Der Verlust an Vakuumsgüte ist also durch das Beladen der Anlage mit Substraten sehr gering, eine schnelle Prozessierung von Losen daher möglich.

Soviel zu den Grundlagen der „PVD-Beschichtung“ – weiter geht es mit „Der Teufel steckt im Detail und was ist ein Bias?“, den nächsten Teilen unserer Serie.

Ausserdem geht es noch um Substravorbehandlung und Targetkonditionierung …